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Abstract. An ensemble learning model that successfully integrates many deep learn-
ing architectures is used to propose an unique method for the identification of diabetic
retinopathy. By combining two different datasets that covered different stages of dia-
betic retinopathy, a dataset with less bias was suggested. Because of the more thorough
training procedure made possible by this improved dataset, the model was able to attain
greater classification accuracy over a range of severity levels. A thorough evaluation of
the ensemble learning approach’s efficacy shows that, in comparison to individual mod-
els, performance measures significantly improve. With 98.7% accuracy, 97.7% precision,
98.7% recall, and a 98.2% F1-score, the ensemble model produced remarkable results.
Several convolutional neural networks were used in this ensemble approach to enhance
the model’s ability to identify diabetic retinopathy, demonstrating.
Keywords: Diabetic Retinopathy, Ensemble Learning, Pre-trained Transfer Learning,
Ensemble Average Method.

1. Introduction. A prominent complication of diabetes and a major cause of vision loss
worldwide, diabetic retinopathy frequently goes undetected until it is advanced, under-
scoring the importance of efficient early identification. Recent developments in computer
vision and machine learning have made it possible to use retinal fundus images for auto-
mated diagnosis and identification of this problem. This study uses convolutional neural
networks (CNNs), a type of deep learning, to create a comprehensive diabetic retinopa-
thy detection system. It uses transfer learning to extract detailed features from images
using architectures such as InceptionV3, ResNet50V2, and DenseNet201, allowing for the
classification of the severity levels of the condition. Ensemble learning also improves
classification accuracy and robustness by combining predictions from several models.

Fundus disease is a significant contributor to blindness and visual loss [1]. Age-related
macular degeneration (AMD), cataracts, and diabetic retinopathy (DR) all have a major
effect on visual function. There are currently no recognized therapies for these conditions,
and vision deteriorates as they worsen. Diabetes affects a sizable portion of the global
population, and DR is a frequent side effect. Although it may not initially create any
symptoms, DR is one of the top four causes of blindness and can cause blindness [2]. DR
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is a result of chronic diabetes mellitus and affects the retinal blood vessels [3, 4]. This
disease, which causes over 400,000 deaths annually, is frequently diagnosed and treated
with fundus images [5].

Due to population aging, DR is now the most common cause of blindness in many
nations, and its prevalence rises with age. Vision can quickly decrease without prompt
and efficient care, resulting in irreversible disability [6, 7]. Thus, it is essential to diagnose
and treat fundus problems as soon as possible.

Using vast amounts of medical data, artificial intelligence (AI) technology can help
primary care physicians diagnose and treat eye conditions in primary care settings. It
is anticipated that combining AI with ophthalmic treatment would meet the needs of a
sizable patient group with fundus problems [8].

Because deep learning (DL) can extract characteristics from training data, it has be-
come popular in many study areas. Through transfer learning (TL), high-performing deep
convolutional neural networks (CNNs), which have shown good results in image classi-
fication, can be modified for other classification tasks. CNNs have demonstrated their
efficacy in machine vision and image classification by independently extracting sophisti-
cated features from images.

To capitalize on the complementing qualities of each unique architecture, we used an
ensemble approach. Because each deep learning model has a distinct edge, we may in-
corporate these varied capabilities by integrating them into an ensemble, which improves
overall performance. In general, ensemble approaches increase robustness to changes in
input data and reduce the danger of overfitting, which improves classification accuracy.
When it came to determining the severity of diabetic retinopathy, our ensemble model
outperformed any single model on its own thanks to the integration of the outputs of
InceptionV3, ResNet50V2, and DenseNet201. This method efficiently handles the com-
plexity and unpredictability related to retinal pictures while simultaneously increasing
diagnostic accuracy.

The main contribution of this work is to improve the accuracy of the system by mod-
ifying the dataset so that it can work perfectly in real-world. We extracted comprehen-
sive characteristics from retinal images via transfer learning using state-of-the-art deep
learning architectures like InceptionV3, ResNet50V2, and DenseNet201. By using these
characteristics, images were categorized into various diabetic retinopathy severity levels,
allowing for more individualized treatment plans and better patient results.

2. Problem Statement and Preliminaries. Computer-aided diagnostic (CAD) sys-
tems were the main method used to identify fundus problems prior to the development of
deep learning. These technologies, which analyzed fundus images for early illness diagno-
sis and screening, closely resembled the diagnostic procedure used by ophthalmologists.
CAD systems were successful in detecting anomalies in fundus images, much as manual
screening techniques [9]. At intermediate phases, they carried out vital tasks such image
improvement [10], [11], and restoration [12, 13], after which they segmented lesions to
extract important information. In the end, these systems reduced the intricate diagnostic
procedure to tasks involving classification or grouping, which conventional machine learn-
ing algorithms could effectively handle. Manual screening by ophthalmologists has long
been the gold standard for DR detection. However, this process is labor-intensive, time-
consuming, and subject to inter-observer variability, which can lead to inconsistencies in
diagnoses[14]. Additionally, reliance on manual screening presents significant challenges
in regions where access to eye care professionals and resources is limited [15].

To overcome these limitations, researchers have increasingly focused on developing au-
tomated systems utilizing machine learning and computer vision techniques. Among these
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advancements, deep learning—a subset of machine learning—has shown great promise for
automating the detection of diabetic retinopathy (DR) from retinal images. Convolutional
Neural Networks (CNNs), in particular, have demonstrated exceptional performance in
image classification tasks, including DR detection[16]. Recent research has shown that
deep learning models trained on extensive datasets of retinal images can achieve levels
of accuracy comparable to or even exceeding that of human experts [17]. For instance,
Gulshan et al. developed a deep learning algorithm for detecting diabetic retinopathy
in retinal fundus photographs, achieving high sensitivity and specificity [16]. Similarly,
Ting et al. designed a deep learning system capable of detecting DR and other related
eye diseases from retinal images of multiethnic populations with diabetes [17]. Abramoff
et al. improved upon these findings by integrating deep learning for automated diabetic
retinopathy detection using publicly available datasets [18]. Another key study led by
Abràmoff et al. evaluated an autonomous AI-based diagnostic system for DR detection
in primary care offices, showcasing its potential in real-world applications [19]. Addition-
ally, Niemeijer et al. assessed the cost-effectiveness of automated diabetic retinopathy
image assessment software, providing insight into the financial implications of adopting
such systems [20]. Treatment outcomes for diabetic patients in a fundus photograph-
based screening program [21-23]. Tan et al. added to the field by developing methods for
automatic detection of microaneurysms in digital color fundus photographs, laying the
groundwork for automated DR screening [24].

Recently, the integration of deep learning in computer vision has yielded promising
results in automating diabetic retinopathy detection using retinal images. CNNs have
become a robust tool for image analysis and classification tasks, especially in DR detection
[25]. Various CNN architectures, such as DenseNet, ResNet, Inception, and EfficientNet,
have been explored to enhance performance in this domain [25].Furthermore, transfer
learning, which utilizes pre-trained models from large-scale image recognition tasks, has
been applied to DR detection, improving both accuracy and efficiency

Several studies have validated the effectiveness of CNN-based approaches for DR de-
tection. For example, Radwan et al. (2024) achieved an impressive accuracy using a deep
residual network [26]. Results show that the suggested strategy outperforms cutting-edge
techniques, with an accuracy of 99.36%, which is suggestive of improved diagnostic per-
formance and dependability in differentiating DR severity levels. Consequently, this helps
to reduce human mistakes and cutting expenses. Although modern methods have shown
to be very effective, Their efficacy in identifying diabetic retinopathy (DR) mainly de-
pends on feature extraction, which can be difficult to broaden [25]. To solve these issues,
deep learning (DL) algorithms allow fundus images to be automatically. In 2024, Rad-
wan developed a CNN model that achieved 98.5% accuracy in detecting COVID-19 from
chest X-rays (CXR). The dataset contained 2541 images, split into training (75%) and
test (25%) sets, with data augmentation used to increase the dataset’s variety. Validated
on Kaggle and GitHub datasets, the model showed improved efficiency with fewer pa-
rameters. However, the model’s performance is affected by data quality, indicating that
further testing across diverse datasets is necessary [26]. Similarly, Radwan et al. (2024)
developed an ensemble model for predicting coronary artery disease (CAD) with 98.9%
accuracy, utilizing the Z-Alizadeh Sani dataset and SMOTE-ENN for class balancing.
The study also proposed potential applications for real-time prediction and highlighted
the importance of feature selection and dataset balancing to enhance performance [27].

In 2025, using data fusion and transfer learning, Aftab and Akhtar presented an ensem-
ble classification system for identifying diabetic retinopathy. Their model achieved 96.96%
test accuracy on a dataset of 5922 fundus images, created by merging three benchmark
datasets. Pre-processing techniques such as CLAHE, SMOTE, and data augmentation



Diabetic Retinopathy Detection through Ensemble Averaging Method 485

improved the dataset’s quality and diversity. The ensemble model, averaging predic-
tions from EfficientNetB2, DenseNet121, and ResNet50, outperformed individual models.
However, they suggested exploring additional ensemble techniques, such as bagging and
boosting, and further dataset fusion to enhance performance [27].

Building on previous research in diabetic retinopathy detection, Abood et al. (2025)
developed a multi-label detection system using deep learning models such as VGG-19,
DenseNet-121, and EfficientNet-B6. The system was tested on three benchmark datasets:
APTOS-2019, IDRiD, and Messidor-2. Pre-processing techniques, including Gaussian
Blur and weighted masking, were applied to improve performance. The results, evaluated
using sensitivity, precision, F1-score, and accuracy, revealed that EfficientNet-B6 outper-
formed the other models. The proposed system showed high accuracy in detecting diabetic
retinopathy severity, which can aid in early diagnosis. However, the study emphasized
the need for lighter models to reduce computational demands for broader implementation
[28]

Guefrachi et al. (2024) proposed a multistage training approach using various CNN ar-
chitectures, including InceptionResNetV2, VGG16, VGG19, DenseNet121, MobileNetV2,
and EfficientNet2L, to identify and classify diabetic retinopathy. To reduce overfitting and
enhance model robustness, they implemented data augmentation techniques. The training
process consisted of two steps: feature extraction followed by fine-tuning through the un-
freezing of specific layers. The refined InceptionResNetV2 model achieved an accuracy of
96.61% when tested on Kaggle’s diabetic retinopathy dataset, demonstrating the effective-
ness of their approach [29]. Similarly, Hussain et al. (2025) developed an enhanced CNN-
based technique called P-EDR to detect diabetic retinopathy in both non-proliferative
(NPDR) and proliferative (PDR) stages. They preprocessed the high-resolution retinal
image dataset using scaling, augmentation, and normalization to enhance picture quality
and feature extraction. The P-EDR model was evaluated based on accuracy, sensitiv-
ity, specificity, and AUC-ROC, achieving 93% accuracy, 92% sensitivity, 94% specificity,
and an AUC-ROC score of 0.97. The P-EDR model outperformed traditional machine
learning models like SVM, RF, PNN, and GBM, highlighting its potential for early and
precise DR diagnosis. Future work suggested exploring transfer learning and additional
benchmark datasets to further enhance performance [30].

Using transfer learning and pre-trained model weights, Chilukoti et al. (2024) in-
troduced computationally efficient ensemble models for the categorisation of diabetic
retinopathy (DR). They used Gaussian blur to reduce noise and CLAHE to improve the
picture. ReLU activation and dropout in a three-layer classifier reduced overfitting while
DR grading feature extraction was taking place. Advanced Quadratic Weighted Kappa
(QWK) values of 0.901, 0.967, and 0.944 were attained by the model on the Eyepacs,
Aptos, and Messidor datasets, respectively. Despite excellent performance, the study
identified shortcomings in addressing the ordered structure of DR grading and identify-
ing all DR phases. Real-time applications require further advancements in processing
efficiency and addressing label inconsistencies.[31].

Desiani et al. (2024) combined the ResNet-50, MobileNet, and EfficientNet archi-
tectures using weighted voting in an ensemble learning approach to enhance diabetic
retinopathy (DR) classification performance. The APTOS and EyePACS datasets were
utilised in the study for both testing and training. The ensemble learning technique out-
performed with 93.3% accuracy, 93.42% F1-score, and 0.866 Cohen’s Kappa. EfficientNet
had the maximum sensitivity at 96.2%, while ResNet-50 had the highest specificity at
99.78%. In contrast to single model classification, the study found that ensemble learning
considerably improved accuracy by 28.37% and addressed overfitting. Nevertheless, the
ResNet-50 model required more refinement.[32]
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3. Methodology. In this study, an ensemble learning approach was employed to improve
the detection of diabetic retinopathy using a combination of pre-trained convolutional
neural networks (CNNs). Diabetic retinopathy is a leading cause of vision loss, and its
detection is challenging due to varying image quality, subtle differences between severity
stages, and an imbalanced distribution of cases. Accurate detection and classification of
the disease’s stages are critical for early intervention.

One of the primary challenges in this task is the class imbalance found in most diabetic
retinopathy datasets, where the majority of images represent the early or no-disease stages,
with fewer images from the severe stages. This imbalance can lead to biased models,
especially when training with a single classifier. To address this, the training dataset in
this study was balanced in a way that ensured fair representation of all severity stages,
though not perfectly equal across classes. This deliberate approach was taken to reflect
the natural distribution of cases in real-world scenarios, helping to ensure the model’s
performance would generalize well in real-time clinical environments.

Furthermore, diabetic retinopathy exhibits subtle differences between stages, making
it difficult for models to distinguish between them based solely on image data. To ad-
dress these issues, ensemble learning was chosen, as it combines the strengths of multiple
models to improve overall classification accuracy. By aggregating predictions from mul-
tiple models, ensemble techniques help to mitigate individual model weaknesses, such as
overfitting to certain classes or image artifacts, and reduce bias by relying on multiple
decision sources.

In this study, pre-trained CNN models, including Inception V3, ResNet50 V2, and
DenseNet 201, were fine-tuned on a carefully curated dataset of retinal images. These
models were selected based on their state-of-the-art performance in image classification
tasks and their varying network architectures, which offer complementary feature ex-
traction capabilities. For example, InceptionV3 excels at multi-scale feature extraction,
ResNet50V2 handles deep network training through residual learning, and DenseNet201
promotes feature reuse and gradient flow in its densely connected layers.

The predictions from these models were then combined using a simple averaging en-
semble technique. This method aggregates the outputs of each model, providing a more
robust and accurate classification compared to any individual model. By leveraging the
unique strengths of each CNN, the ensemble model enhances classification performance
and reduces the risk of overfitting to the training data.

3.1. Dataset. For this study, two datasets were used:

• The APTOS2019: Blindness Detection EDA Dataset .

• The Diabetic Retinopathy Detection Dataset .

To prepare the data for training, the images were divided into groups based on the
severity of diabetic retinopathy, as determined by clinicians. One of the majonr obstacles
in diagnosing diabetic retinopathy is the intrinsic class imbalance, where the majority of
images belong to the early or no-disease stages, leaving fewer samples for the more severe
stages. The training dataset was meticulously curated to ensure a balanced representation
of images across all severity classes. This step was crucial to avoid bias toward majority
classes and to ensure accurate predictions at every stage of the disease. Table 1 displays
the distribution of images in each class.

n
The APTOS2019 dataset contains retinal images captured using fundus imaging meth-

ods under various conditions. Each image is rated by a clinician for the severity of diabetic
retinopathy on a scale from 0 to 4. A total of 3,663 images were included in the training



Diabetic Retinopathy Detection through Ensemble Averaging Method 487

Table 1. Distribution of Images by Severity Stage and Dataset

Stage Severity Level Dataset 1
(APTOS2019)

Dataset 2 (DR
Detection)

Proposed
Dataset
(Training
Set)

Proposed
Dataset (Test
Set)

0 No DR 1,796 25,802 2,000 400

1 Mild 369 2,438 1,500 300

2 Moderate 995 5,288 1,500 300

3 Severe 193 872 1,000 200

4 Proliferate 295 708 1,000 200

set, and 1,929 images were included in the test set. Figure. 1 describes APTOS2019
dataset.

Figure 1. Dataset 1 APTOS2019: Blindness Detection EDA Dataset

The Diabetic Retinopathy Detection dataset includes high-resolution retinal images,
which have been captured under various imaging conditions, with both left and right
fields provided for each subject. Each image has been labeled with a subject ID and
assessed by a clinician for the presence of diabetic retinopathy on a scale from 0 to 4.
A total of 35,108 images have been included in this dataset. Figure 2 illustrates the
distribution of the Diabetic Retinopathy Detection Dataset.

Figure 2. Dataset -2- Diabetic Retinopathy Detection Dataset

Images from both the APTOS2019 Blindness Detection EDA Dataset and the Diabetic
Retinopathy Detection Dataset were combined to construct a more refined and inclusive
dataset for diabetic retinopathy detection. The process involved categorizing the im-
ages into classes based on the severity of diabetic retinopathy, as evaluated by clinicians.
The representation of images from each severity grade in the training dataset was then
meticulously balanced. Figure. 3. describes the proposed dataset.
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Figure 3. Proposed Dataset

3.2. Model Design. The diabetic retinopathy detection system used an ensemble of
three pre-trained convolutional neural networks (CNNs): InceptionV3, ResNet50V2, and
DenseNet201. Each model was chosen for its unique architecture and complementary
strengths in feature extraction.

The system begins by feeding the input data—retinal images resized to 224x224 pixels
with three color channels (RGB)—through the input layer. This standard size ensures
compatibility with the pre-trained models and effective processing. The RGB color chan-
nels capture essential visual information related to the retinal features, which is crucial
for distinguishing between different stages of diabetic retinopathy.

Each of the three CNNs was fine-tuned using retinal images, allowing them to learn
domain-specific features. The models’ final dense layers output probability predictions,
where each model expresses its confidence in classifying the image into one of the diabetic
retinopathy stages. These outputs reflect different perspectives on the retinal image due
to the unique architecture of each CNN.

Figure 4. Model Summary

Next, the ensemble method combines the predictions from each CNN. A simple averag-
ing technique was used to merge these outputs, creating a unified prediction by averaging
the probabilities generated by InceptionV3, ResNet50V2, and DenseNet201. This step
minimizes the impact of any potential biases or errors from individual models and lever-
ages the strengths of each network, enhancing the robustness and accuracy of the final
prediction.

The final step in the model design involved an output layer with softmax activation,
which converts the averaged probabilities into a probability distribution across the possible
classes. This ensures the final predictions are interpretable as probabilities, summing to
one, and facilitating decision-making by highlighting the most likely stage of diabetic
retinopathy.
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In terms of monitoring and performance tracking, the system’s training and validation
accuracy, along with loss curves, were visualized. A confusion matrix was also used
to provide deeper insights into the model’s classification performance, assisting in the
identification of potential issues such as overfitting or underfitting. This allowed for
further fine-tuning and optimization of the model’s parameters.

In summary, this model design leverages the combined capabilities of multiple CNN
architectures, fine-tuning them for retinal image classification and employing ensemble
learning to ensure robust and accurate diabetic retinopathy detection.

4. Results and Discussion.

4.1. Confusion Matrix Analysis and Model Comparison. The importance of eval-
uating model performance at the class level is highlighted by the confusion matrix anal-
ysis. An N x N matrix, known as a confusion matrix, is used to assess the performance
of a classification model, where N represents the number of target classes. This ma-
trix compares the actual target values with those predicted by the machine learning
model.In the research, strong performance is demonstrated by InceptionV3, ResNet50V2,
and DenseNet201, despite some misclassifications across classes. The ensemble model
surpasses the individual models, exhibiting fewer misclassifications overall. The level of
misclassification in the ensemble model is significantly lower compared to the individual
models, indicating a more consistent performance.The performance of the InceptionV3
model is illustrated in the confusion matrix, showing strong accuracy in Moderate and
Proliferative DR stages with 300 and 199 correct classifications, respectively. Some mis-
classifications are noted, such as No DR being incorrectly identified as Mild DR, indicating
minor areas for improvement. Figure. 5. describes the confusion matrix of InceptionV3.

Figure 5. Confusion matrix of InceptionV3

The ResNet50V2 model’s confusion matrix highlights its high accuracy, particularly
in the Mild and Moderate DR stages with 300 and 299 correct predictions. Minimal
misclassifications are observed, such as No DR misclassified as Mild, demonstrating the
model’s overall effectiveness with minor errors. Figure. 6. describes the confusion matrix
of ResNet50V2 model.

The DenseNet201 model’s confusion matrix reveals high accuracy in No DR and Prolif-
erative DR stages, with 373 and 200 correct classifications. Misclassifications are present,
notably between Moderate and Severe DR stages, yet the model performs reliably with
some minor errors. Figure. 7. describes the confusion matrix of DenseNet201 model.
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Figure 6. Confusion matrix of ResNet50V2 model

Figure 7. Confusion matrix of DenseNet201 Model

The confusion matrix for the ensemble model is noted for its high accuracy, especially
in the Moderate and Proliferative DR stages, with a reduced number of misclassifications.
It is evident that the strengths of the individual models are effectively combined by the
ensemble approach, resulting in enhanced performance relative to the individual models.
Figure. 8. describes the confusion matrix of proposed model.

4.2. Model Performance. The bar chart below illustrates the individual performance
metrics of the InceptionV3, ResNet50V2, DenseNet201, and Ensemble model. Figure. 9.
describes the performance of multiple model.

The individual models, InceptionV3, ResNet50V2, and DenseNet201, each exhibited
strong performance metrics, including high accuracy and well-balanced precision, recall,
and F1-scores. These metrics reflect the effective classification of diabetic retinopathy
images into their respective categories with a high degree of accuracy and reliability.

Upon closer examination, ResNet50V2 was identified as the top-performing individual
model, demonstrating slightly higher accuracy and precision compared to InceptionV3 and
DenseNet201. This superior performance can be attributed to the unique architecture of
ResNet50V2, which employs residual connections to facilitate more efficient information
flow through the network, thereby enhancing its predictive capabilities.
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Figure 8. Confusion matrix of Ensemble Model

Figure 9. Performance analysis of multiple models

However, the ensemble model’s performance represents the true highlight of the study.
By integrating the diverse strengths of InceptionV3, ResNet50V2, and DenseNet201, the
ensemble model achieved exceptional results, surpassing the performance of each individ-
ual model. With an accuracy of 98.7%, the ensemble model demonstrated its capability
to improve upon the predictive performance of its constituent models.

In conclusion, although each individual model performed admirably, the ensemble model
emerged as the clear leader, highlighting the benefits of combining multiple models to
achieve superior performance in diabetic retinopathy detection. This underscores the
value of employing ensemble methods to improve predictive accuracy and reliability in
complex tasks.

4.3. Accuracy and Loss Graph. The accuracy curve for the InceptionV3 model shows
a steady increase over the training epochs, indicating consistent improvement in the
model’s ability to correctly classify diabetic retinopathy images. The loss curve demon-
strates a gradual decrease, suggesting effective learning and optimization during training.
Figure. 10. describes the accuracy and loss graph of InceptionV3 model.

The accuracy curve for the ResNet50V2 model illustrates a rapid improvement in classi-
fication accuracy during the early epochs, followed by a more gradual increase as training
progresses. This indicates that the model quickly learns to classify images correctly and
continues to refine its performance. The loss curve shows a consistent downward trend,
signifying effective convergence and a reduction in classification errors. Overall, the curves
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Figure 10. Accuracy and loss graph of InceptionV3 Model

demonstrate ResNet50V2’s strong performance and effective learning dynamics. Figure.
11. describes the accuracy and loss graph of ResNet50V2 model.

Figure 11. Accuracy and loss graph of ResNet50V2 Model

The accuracy curve for the DenseNet201 model exhibits a smooth upward trajectory,
indicating continuous enhancement in the model’s classification accuracy throughout the
training period. The loss curve similarly displays a steady decline, reflecting successful op-
timization and learning. Figure. 12 describes the accuracy and loss graph of DenseNet201
Model.

The accuracy and loss curves for the Ensemble model are shown to illustrate a consistent
improvement in performance throughout the training process. It is indicated by the
accuracy curve that the model’s ability to correctly classify diabetic retinopathy images
steadily enhances, while the loss curve reflects a continuous decrease, suggesting effective
learning and optimization. Figure. 13 describes the accuracy and loss graph of proposed
Model.

The system effectively identified the presence of diabetic retinopathy and accurately
determined its severity in all of the evaluated photos, as expected. These findings em-
phasize the system’s resilience and demonstrate how well it functions as a trustworthy
diagnostic tool for differentiating between various DR stages. Comparison between the
existing system and the proposed work is given in below: Table 2 describes the comparison
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Figure 12. Accuracy and loss graph of DenseNet201 Model

Figure 13. Accuracy and loss graph of Ensemble Model (Simple Averaging)

Table 2. Comparison of Different Models for Diabetic Retinopathy Detection

Authors
(Year)

Dataset (Samples) Applied Models Measures (Pro-
posed Model)

Hussain, M.,
Ahmed 2025 [30]

Diabetic Retinopathy
Detection dataset

CNN 93%

Guefrachi, S.,
Echtioui 2024
[29]

Diabetic Retinopathy
Detection dataset

InceptionResNetV2 96.61%

Abood, R.H.,
Hamad 2025 [28]

Diabetic Retinopathy
Detection dataset,
APTOS-2019

EfficientNetB6 94%

Aftab, S. 2025
[27]

APTOS 2019, IDRiD,
and Messidor-2

Ensemble model with
Averaging (Efficient-
NetB2, DenseNet121,
and ResNet50)

96.96%

Y. Sun 2019 [4] Medical Dataset Random Forest 92%

Proposed
Work

APTOS2019, Dia-
betic Retinopathy
Dataset

Bias Prevention, Ac-
curacy Improvement

Accuracy: 98.7%,
Precision: 97.7%, Re-
call: 98.7%, F1-Score:
98.2%

5. Conclusion. Using a variety of retinal pictures, our work created and assessed a deep
learning-based system for automated diabetic retinopathy (DR) identification and catego-
rization. When it came to DR stage classification, individual models such as InceptionV3,
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ResNet50V2, and DenseNet201 shown excellent efficacy and accuracy. By integrating pre-
dictions from several architectures, the ensemble model fared better than the individual
models, improving accuracy and resilience. Confusion matrix analysis revealed opportu-
nities for improvement as well as performance in class-level categorization. The approach
proved to be dependable in determining the existence and severity of DR at different
phases. To guarantee its clinical usability and efficacy in actual healthcare settings, more
improvement and validation are required.
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